Valon ja aineen vuorovaikutuksella voidaan merkittävästi parantaa OLED-näyttöjen kirkkautta

24.02.2025

Tutkijat kehittivät teoreettisia menetelmiä OLED-teknologian tehokkuuden parantamiseksi hyödyntämällä valon ja aineen hybriditiloja. Käytännön sovellukset vaativat vielä uusia materiaaleja ja jatkokehitystä, mutta tutkimus tarjoaa lupaavan suunnan OLED-teknologian kehitykselle. 

OLED-teknologia on yleistynyt valonlähteenä erilaisissa korkealaatuisissa näyttölaitteissa, kuten älypuhelimissa, kannettavissa tietokoneissa, televisioissa tai älykelloissa.

Fluoresoivat OLEDit ovat mullistaneet näyttölaitteiden teknologiaa joustavuutensa, keveytensä ja ympäristöystävällisyytensä ansiosta. Teknologian heikkoutena on kuitenkin alhainen hyötysuhde: fluoresoivissa OLEDeissa vain 25 prosenttia sähköenergiasta muuntuu tehokkaasti ja nopeasti valoksi. OLED-näyttöjen kirkkaus on yleensä myös muita valaistusteknologioita heikompi.

Turun yliopiston ja yhdysvaltalaisen Cornellin yliopiston tutkijat ovat nyt ehdottaneet ennakoivaa mallia tämän ongelman ratkaisemiseksi.

OLEDit, eli orgaaniset valoa säteilevät diodit ovat elektronisia komponentteja, jotka valmistetaan orgaanisista hiilipohjaisista yhdisteistä ja jotka tuottavat valoa, kun niihin johdetaan sähkövirtaa. Toisin kuin perinteisissä LCD-näytöissä, OLED-näytöissä jokainen pikseli säteilee itse valoa ilman erillistä taustavalaistusta.

Kun OLEDeissa käytetyt orgaaniset valoa säteilevät molekyylit asetetaan kahden puoliläpäisevän peilin väliin, ne voivat alkaa vuorovaikuttaa valon kanssa. Tämä vuorovaikutus voi luoda uudenlaisia hybriditiloja, eli uusia hiukkasia, joita kutsutaan polaritoneiksi.

Tutkimuksessa havaittiin, että oikeanlaisella säätelyllä voidaan löytää ihanteellinen piste, jossa pimeät tilat, 75 % kaikista tiloista, alkavatkin muuttua kirkkaiksi polaritoneiksi. Tämä voisi parantaa näyttöjen kirkkautta ja energiatehokkuutta huomattavasti.

– Vaikka yleinen ajatus polaritonien hyödyntämisestä OLED-teknologiassa ei ole täysin uusi, ennustava teoria suorituskyvyn vaihtelusta on puuttunut. Tässä työssä tarkastelimme tarkkaan, missä polaritoni saavuttaa ihanteellisen pisteensä eri skenaarioissa. Havaitsimme, että polaritonien vaikutus riippuu kytkettyjen molekyylien lukumäärästä. Mitä vähemmän molekyylejä, sitä suurempi vaikutus on, kertoo apulaisprofessori Konstantinos Daskalakis Turun yliopistosta.

– Esimerkkimolekyyleillä ja vain yhdellä kytketyllä molekyylillä hyötysuhde parani merkittävästi. Parhaimmillaan polaritonit kiihdyttivät pimeiden tilojen konversiota jopa 10 miljoonaa kertaa nopeammaksi, kertoo tutkijatohtori Olli Siltanen.

Kun ilmiötä tutkittiin samanaikaisesti suurella määrällä molekyylejä, polaritoninen vaikutus oli vähäinen. Siksi nykyisten OLED-laitteiden valontuottotehokkuutta ei voida parantaa yksinkertaisesti varustamalla ne peileillä.

Tutkimuksessa saatu teoreettinen tieto on lupaava, mutta sen soveltaminen käytäntöön vaatii vielä jatkokehitystä.

– Seuraava haaste on kehittää teknologiaa, joka mahdollistaisi yksittäisten molekyylien vahvan kytkennän, tai luoda uusia molekyylejä, jotka on räätälöity polaritoneja hyödyntäviin OLEDeihin. Molemmat lähestymistavat vaativat merkittäviä teknisiä ratkaisuja, mutta onnistuessaan ne voisivat parantaa OLED-näyttöjen hyötysuhdetta ja kirkkautta huomattavasti, Daskalakis selittää.

OLED-laitteiden laajamittaisempaa käyttöönottoa ovat hidastaneet niiden alhainen energiatehokkuus ja rajallinen kirkkaus, etenkin verrattuna perinteisiin LED-laitteisiin. Tämä tutkimus voi kuitenkin tarjota perustan uuden sukupolven OLED-laitteille, jotka ovat entistä tehokkaampia ja pystyvät saavuttamaan aiemmin mahdottomana pidetyn suorituskyvyn.

Tulokset on julkaistu Advanced Optical Materials -lehdessä.

Linkki artikkeliin

 

Kuva medialle

Uutisen kuvituskuva on median käytettävissä: Sininen OLED Kuva: Mikael Nyberg ja Manish Kumar

Kuvassa näkyy tavallinen sininen OLED. Levy on leveydeltään 15 mm ja emittoivan pikselin leveys 2 mm. Polaritoni-OLED saataisiin korvaamalla alla ja päällä olevat ohutkalvot puoliläpäisevällä materiaalilla, joiden paksuus olisi 10-100 nm. Niitä ei olisi mahdollista erottaa kuvasta. 

Luotu 24.02.2025 | Muokattu 24.02.2025